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Asymptotic Behavior of the Spectra of RF Pulses 

with Linear Frequency Modulation 

Abstract 

The asymptotic spectra of wide-band radio frequency pulses with 

linear frequency modulation are evaluated      It is specifically shown that at 

frequencies (measured from the carrier frequency) much larger than the 

maximum FM deviation the effect of the FM is small      In particular,   at a 

frequency 50 mc higher than the carrier frequency    the envelope of the spectrum 

of a 10 jjisec  rectangular pulse with a 10 mc FM. deviation is less than 1% above 

the envelope of the spectrum of a pulse with no FM      The spectrum of a cosine 

pulse with these same characteristics is increased by less than 3%, 

Introduction 

It may sometimes be necessary to operate two or more closely spaced 

pulse compression radar transmitters simultaneously'     To avoid interference 

each radar transmits at carrier frequencies  sufficiently far from all other 

receiver bands to insure a minimum noise level for  each receiver       The 

optimum design depends on a knowledge of the asymptotic  spectral density of 

each signal transmitted 

Spectral densities of simple RF pulse shapes are not difficult to calcu- 

late      However    introduction of a wide-band linear frequency modulation makes 

these calculations considerably more difficult      It is often assumed that cor- 

rections to the spectrum are negligible at the frequency deviations of interest, 

i   e. ,   50 to  100 mc from the carrier frequency 

An evaluation of spectral densities  including the effects of wide-band 

linear FM is presented here      The method used is first explained''for the J 
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relatively simple case of a rectangular pulse envelope.     By analytically 

T T 
extending the signal  into the complex plane,   the contour   - -y-   <  t  <   + ~j    on 

the real time-axis (where   T   is the pulse duration) can be deformed to a new 

contour for which the Fourier transform is easily bounded.    An upper bound 

for the spectrum is then readily obtained.     It is further shown that the true 

spectrum is very close to this upper bound 

Following the treatment of the rectangular pulse,   the method is ex- 

tended to the case of a cosine pulse of the same time duration      In the absence 

of linear FM,   a cosine pulse more closely approximates a realistic spectrum 

(asymptotic   j   dependence) since there are no zero rise-times      A general 
(Afr 

continuous,   piecewise linear pulse shape is treated in Appendix A      Here one 

again determines an upper bound for the spectrum which in the absence of FM 

reduces to the correct result      The result has been applied to the case of a 

symmetric trapezoidal pulse envelope 

In each example considered,   it has been found that the linear FM  in- 

creases the spectral density by only a few per cent at a frequency five FM 

deviations from the carrier frequency, the effect diminishes as   j   for a 
(Af) 

further increase in   Af     One may thus conclude that under these circumstances 

neglecting linear FM in a calculation of the spectral density at these frequencies 

is a good approximation 

Rectangular Pulse Envelope 

The spectrum (one-sided) of a rectangular pulse of unit height and 

duration   T    centered at  t = 0,   with complex RF carrier   f     is r o 

G(Af)= "VAI^     ' '    w 



where  Af - f - f   .     The spectrum of the same rectangular pulse with linear 

FM is given by 

T/2 

G(Af>fi) - iir ut       -iZirAft   ^ 
e     ^       e dt 

T/Z 

/2     -IZTT lAfTx - tl_ xZ 

= T   \      e L - 

1/2 

1/2 

dx   =   T    ^     e-
i2^(x) dx   (2) 

-1/2 

where  |i   is the rate of change of frequency in cycles/(sec)   ,    Primary interest 

is  in the behavior of G(Af, |JL)   at frequencies large enough so that 

Af  » HIT   » 1      ; 

i. e. ,   Af  is much larger than the bandwidth of the pulse with linear FM,   which 

is in turn much larger than the bandwidth of the pulse without FM.    Note that 

|jiT   is the total frequency deviation due to FM during the pulse 

By completing the square in the exponent,   the above integral can be 

evaluated in terms of the difference of two Fresnel integrals of large argument. 

Accurate tabulation of the Fresnel integrals at the large arguments required 

are not available; furthermore,   generalization to other pulse shapes is not 

immediately obvious.*    The integral will here be evaluated by the method of 

steepest descent.       Generalization to other pulse shapes  is tben readily 

available.     Let  z   be a complex variable; the analytic continuation of (^(x)   is 

*A geometrical evaluation of the Fresnel integral for large argument has been 
performed by E.   B.   Temple,   M. I. T    Lincoln Laboratory,   Personal Com- 
munication. 

See,   for example,   A.   Erdeiyi,   Asymptotic Expansions.   Dover     1956, 



cp(z) - AfTz - 2H-
TZZ2

     • (3) 

One must then find contours in the z-plane on which the phase of the integrand 

is a slowly varying function.     For   z = x + iy   m (3), 

,     ,     , 1    „2.   2        2 Re {>]= AfTx  -jV-T^iK    - y) 

\xx\\tyi - AfTy  - (iT    xy 

Contours for which  Im HpX  - const      satisfy the equation 

or 

AfTx - -T JJLT   (X    - y   )  = const. 

2      .        Af.Z 
y     - (x -  —tm)     - const 

and are therefore hyperbolas, the two asymptotes have slopes ±1 and inter- 

Af 
sect the x-axis at  x = —=•   > 1 

M.T 

Since the integrand is an analytic  function of   z,   the contour may be 

deformed by integrating to infinity along the hyperbola passing through 

z =  - 1/2    and then back along the hyperbola passing through   z =  1/2      (See 

Fig     1       The contour shown is for   Af > 0   ) 

On   C       (letting   -)   =  %-r ) o' "    '        At 

X =        (1   .   W(l   +   ')      + 7   y       ) 

(!+•£)    + 7   y 

-) . 2        2    2 
Imcp   -   AfTy   /l/(l + 7)     +7    > 

Re<p  =<p(4) = -^ (1 +J) 
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Thus the contribution to the integral of the contour   C     is o 

r e.i2iT(Re<p + ilm^)dz = e        ^'7:'{ y^       7 

C 

-Zvyi-j)  r   -2TTAfTy^/fl +^)2 +72y2 

(i - 7 y ) dy =  -e \ e 

i^l)2*-?/ 

(i + T I  ) dy 

o 

Similarly,   on  C, 

1 ,, /.,      7.2  ,     2   2.        dx 7y x.T(l   -   y(l   -^)     -fly     )   ,    ^   =       -- 
,,     Tv^        2    2 
(i -T)  

+^ y 

i!:i ■''    s"''  i/(1 - i^2 + ^2yZ 

Rec^      (p(^) -   ^1 (1-J) 

The contribution from   C,    is 

r-U^e^Hm^)^ = e-^ l^fTyVd-^^'v2' 

c 

i2^(^)  p  .ZrfAi-IysJd- ^)    +7   y 
d -     , ' y )dv = e \e 

i v «■   ,  Arrn    L    7T2" " 2   2' 

(1+    ; ,y r)dy 
L      7^2        2    2 



Thus 

G(Af,|x) - Go(Afl(i) + G^Af.ji) 

where 

-u^^)? .2.^(1-|)V77    UiiAfT 
G

0(Af.M-) = lTe \ (e - e 

.2TrAfTy>y(l+^)2 +lV 
) dy 

and 

GjCAf.ji) = Te J ( 

,_    A/ 1 .   oo       -ZirAfTy .(1 - 4-) 1 - -4       + 7    V 
e ' iZTTAfT 

—    - e 

U-l)Z+y2Y^ 

:n M i    ;;/ü+5)2 + 72y2 

7.2        2    2 
(1 + ^)     + 7    y 

) ^ydy 

Both   |G   (Af, JI) I    and |G,(Af, |JL)|   attain their maximum values at the fre- 

2n + 1 
quencies   Af    = —r-^— for   n = 0, 1, 2.   . . . ,oo .     Thus the envelopes of each 
^                         n          2T r 

are: 

n    -ZvAfTy J(l -l)2+72y 
G  (Af,,i)| = T \ (e ^ 

o n   'env. J 

-2TrAfTy .1(1 + l)Z + 7
2y2 

+ e ^ ^ )  dy ; 



GAA£,ii)\ = T \( 1 n ' env. J 
e 
-ZTrAfTy^l _ ^-)2 + 72y2 

7x2 Z    2 

.'•.rr,.\fl\   .J{1 + J)2 +  72y2 

+   ; ) Ty dy    . 

Vd+J)   + T y 

Since envelopes for  G   (Af,^)  and G^Af, p.)   are attained simultaneously for 

the same  Af     (and   iGJAf, u)! <   |G   (Af, ^L) | for 7 < 1).   it immediately n '    1 n  ' env.        '    o '    'env. 

follows that (lower bound = 1. b. ,   upper bound = u. b. ) 

and 

env. |G   (Af.^L   , -   iGJAf.ii)!      , ^   ^(Af,^) 
i    0\       r'll.b. env.        '    1 n  'u. b. env. 

<   |G  (Af,a)|      . +   iG^Af, |i)l      , (4) 1    ox        '^''u. b. env. '     1 r   ' u. b. env. 

Using inequalities (B-l),   (B-2),   and (B-4) of Appendix B,   one obtains 

f    -2TTAfTy(l - 4-) -2TTAfTy(l +|-) 
|G   (Af,ji)l ^ T  \ (e + e )dy 1    o r  ' env. J 

o 

- TTET  \    7   +   , + 7   ' 

oo r~—-—T    T1 3 

Using inequality (B-l) and 



Y(1 ±f)   + T  y 7 

one further obtains 

Thus 

G^Af.fi) >   7    ^ii 
env. _   ^TST 

( ZTTA^T ^ ( 2~T) 

¥sr 
7(1 + |;2) 

IF^TT  2~T 
2TTAfT(l - X-) 

S   iGlAf,^) 
env. 

TTAT 

! YOJ-JT2) 

1 
2^" 

1_' ZTrAfTd-') T T' 

(5) 

The exact spectrum envelope (see Eq.   (1)) of a rectangular pulse with no FM 

is 

G(Af, 0) 1 
env. TrAf 

For frequencies  in the asymptotic  region   (Af » |j,T » m),    the bounds  in (5) 

are very tight.     For example,   if  T = 10 p.sec,   Af =  50 Mc,   and  JJLT = 10 Mc, 

Eq.   (5) becomes 

■4 
1   -   10 

TEi~ - lG(Af'^ < L01 
env. TrAf 

Thus the effect of the FM on the envelope of the spectrum is quite small in 

the asymptotic  region. 



Note that a bound on the spectrum of any signal  S(t)   which is the result 

of a linear operation on   g(t)   is  easily obtained from the relation 

S(f) -  H{f)G(f)    . 

This method cannot be used,, however,   to extend the results of this  section to 

other pulse shapes.     For  example,   passing a rectangular pulse with linear 

FM through a filter matched to the  rectangular envelope does not give a 

triangular pulse with linear FM. 

Cosine Pulse 

In contrast to the rectangular pulse,   the cosine pulse has no zero 

rise-time and is therefore a more realistic model      The envelope of the 

spectrum of the cosine pulse (in the absence of FM)  is found to be 

G(Af) IT 
env (2AfT) 

1 

^T 
which has a characteristic -5-   dependence for large  -if.     If one includes 

Tutr 
linear FM,   the spectral density  is then 

T/2 

G(Af  u.) rrt 
COS    -=r   e 

i2Tr(Aft   - jiit   ) 
dl 

T/2 

1/2 

-1/2 

i Zn (p(x) -l In    \(p{x)   + 
+ e 

7 
dx 

where (p{x.)  = AfTx  - 7-(J-T    x 

Each of the above integrals   is similar to the one encountered in the 

treatment of the rectangular pulse '    Because of the ±-j term in the exponents 

10 



the two integrals are evaluated along slightly different hyperbolic contours 

passing through  z =  - y   and  z = -7    in the complex z-plane.     The result is 

where 

G(Af,ji) = Go(Af,|i) +G1(Af, ^)    , (6) 

GjAi,») 
T     i2Tr^(7) 

T e 

-ZTTAfTy^/d -]■ 
(e 

1     .2        2   2' 
7ÄfT)    +1    y 

_ o 

JT 

- e 
.zwAfTy/d-^ +wr)2+T2y2 l2TrAfT i 

)dy + e \ 

and 

(e - e )dy 

i2iT(^(7) 
G1(Af,n) = i^. e 

_o 

^AfTy J1"?  -7OT)2+  '2y2' 

■ ,      -) 1     \z ^    2    2 

(1-7 -73fT)    +1   y 

.z.AfTy /(iTy^ZTW 

a-7+isrr)2+A2 
) Ty dy   + e 

i2TTAfT 

-^TTAfTy J1 + 7  -CTT)2+T2y2             -ZTrAfTy ^ 1 + J ^^^TTV 

{-      -  ^  ) 
,,    y I    »2       2  2 
<1 + 7+OTT)    +7 y 

7 y dy 

1 1 



Each integrand for   G   (Af, p.)   and  G^Af,^)   is positive; thus,   envelopes are 

obtained simultaneously at  Af    = ■=-  for   n = 0. 1, 2, . ,    ,oo ,     Since 7 n      T 

G^Af.u) <  |G  (Af.ji) for  7 < 1, 1 ■env. o ! env 

G  (Af  ji) -    G^Af.ix)       . ^    G(Af,ni)| 
o lb   env 1 u   b   env !env 

G   (Af,HL)|      . +   iGJAf,^)! 
o u   b   env. 1 u   b. env (7) 

or 

G    (Af.ta) <   4- 
o 'env L 

^TTy(e 
.z.AfTd-^ -7srr)y 

.2irAfT(l + 
7 

+ e 
7  " TÄfT )y 

)dy 

G (Af.fi)] o r  x env. 
IT 

7T(ZAfT -   1)' 2(1 -        T,      \C 

T /-!i t 

Afi air 

Using inequalities (B-l) and (B-4)i   it is possible to determine a lower 

bound for the envelope m the same manner as presented for the rectangular 

pulse      One finds the result 

G   (Af  u) o ■env. 
G   (Af  [i)        . 

o ' u. b 
1   - 

1 

^■-I+WT' 

 T  (8) 
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To determine an upper bound for   ICjAf. ^j.   let 

p = 2Tr_fT . 

andwnte   JGJAf.^l   as a double integral: 

iG (AflK)| =T r 'env       Z 

s 
-P'Y'ji 

\ dy->y  \ dp'y(e        1 Z      Z2rT 
1    .2 .     2   2 

y 

.""WC-i'CTT)2* 'V I     .2        2  2 oo .<- 

) +  \ dy«,y   \ dp' 

1      v2 .     2   2 
;- 

0,'y(1 + 7-2r7T)   +' y -p'y V<1+^T7^r)'^V y 
) 

Exchanging the order of int( 

iG^Af.^ri - 4 Jdp. Jdy ^ y3(e'
p,y{J - ? ■ CTT^ e-

p,y^+ 7 -TOT) 

tegration and using (:?>-3) and (B-l) 

00 OC^    

tir-, T j'dp. P'( 

r"   -    -   , d - 1 T  "r- ; r f 
iGJAf,^)] 1 ' env 

2T i-. 

7r(2AfT)2   (2^T) 
2(1 T-Tr + i 

For the case   T = 10 
7 "CTr) 2(1 +7 

^sec,   Af =   50 Mc.   and KT   :  10 Mc,   the bounds in ine 

1       .4 
7 " CTT' 

quality (7) 
are 

'•O^GfAf.oH^slG^,! £1   03|G{Afi0) 
env 

Thus the FM contribution to the soectral  H^n^it,, ia wie t>pecirai density is again quite small for 

")   =  1/5; this contribution continues to dec-PMa» =>=        1 * LU aecrease as    ^   for a constant FM 

deviation. ' 
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Trapezoidal Pulse 

The results obtained for a general continuous piecewise linear pulse 

dhape (see Appendix A) are here specialized to the case of a symmetric 

trapezoidal pulse shape (Fig    ^) 

T    "T 

Fig.   2   Symmetric Trapezoidal Pulse 

The general result (Eq    (A-3))  is 

G(Af,jx) = T    Z:(sk -  s.^^e {A^ + iBk) 
k 

w here 

-^yV1 + & 
2    Z( 

dy 

1/ 1 + ßu y 
2    2 

k 

B, 
^ 

c/i + a 2    2' 
, y i) + 

^y' 

i + ßky 

-^kyVi + ßk
Zy2 

e dy 

^(xk)  =   (Af)Txk  - znT    xk 

>,   = slope between  x,    ,   and  x, 
k ■ k-1 k 

14 



1 
k     \ 

—     -   X 
y k 

,    a,   -~ 2TTAfT(l - 7X. ) 
k k 

and the breakpoints are at times   x, T.     The upper bound is given by 

k 
G(Af(ji)|  < -y   S |Akl   +  |Bk 

It can further be shown that 

|Ak^ 
(ZTiAfT)    (1 - Y^)' 

K k ' 1 T 
(ZTTAfT)J(l - Txk)^ 

Thus 

G(Af,n) 
-^7 + F^  + TTZ 

(zwAf)^   (i.;)Ä   (i-;+^)fi   (1 + ;.^) Z T "T 7 ■ T" 

(1^)' 

2-> 

(Z.Al)^     ir^rT i-q:)4 +
(I-T: +iV 7 T T" 

TTT  + 

(i + i   -)'    (iT^7 
1 

(wAf)   6 

2(1-1) 2(1 + :*) 
7M7:srf(ü7TT7+^T|? ) (9) 

In the absence of FM,   the spectrum is 

G(Af, 0)  =  X—7—   sin rrAf 6   sinTrAf(T-6) 
(rrAf)   h 

1 5 



which is bounded by 

G(Af, 0)| £ -,—]—7- 
(irAf)  ß 

For   T =  10 ^xsec,   Af - 50 Mc,   and |aT =  10 Mc,   the upper bound in 

Eq    (9)  becomes 

(rrAf)  6 

which is only 3. 2 per cent higher than the upper bound in the absence of FM 

Conclus ions 

The results summarized below are valid in the asymptotic  region of 

the spectrum defined by 

Af »  ^LT »  Jjr 

where 

Af -   deviation from carrier frequency, 

T    =   pulse length, 

^i     =   frequency sweep rate, 

and G(Af, |ji) . denotes the  spectrum of the pulse in question for a given value 

of   |1 

■   16 



Rectangular Pulse 

g(t) 

T 
T 

T 
7" 

->     t 

G(Af, ,1) ^   ] 

env     irAf     .       , -;. , Z 1 - VTJ 

Cosine Pulse 

»   g(t) 

G(Af,ji) 
env "   TT(2AfT-  1)Z 

(1 
fiT 

2 T 

ZAfT -  1 u + 2AfT - 1' 
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Continuous     PLecewise Linear Pulse 

The   s,    are the slopes of the linear segments      The magnitude of the 
K 

spectruni has the following bound 

r 
G(Af,H)!  X—I 1  + 

(ZTTAf) (1-    f) TrAfT(l -   X) 
s,   -  s k    k-1 

Trapezoidal Pulse (special case of a continuous,   piecewise linear pulse) 

g(t) 

T       T + 6 T" 0     T 

G(Af)|i) env        ,    . j.. Z 
(irAf)    6 Z(l-4-)Z 2(1+  \)' AfT 

18 



APPENDIX A 

Continuous,   Piecewise Linear Pulse 

The continuous,   piecewise linear pm - c,   g(t),   can be written 

g(t)=   gk+   sk(t-tk)  , for        tk^  t  ^tk+1    , 

where  t, ,   k = 0,   ...   N  are the breakpoints and   s,    is the slope of the linear 

segment between  t,    and  t,  ., .     Outside the interval (-T/2,   T/2),   g{t) = 0. 

The asymptotic region for the spectral density is defined by 

Af » \it  » Y      ■ 

The spectrum of such a pulse with linear FM. is 

N-l 
G(Af(ji) = T    S 

k = 0   • 

k+1 

^k-TskXk)+TskX 

-i2TT(AfTx - ^hiT2x2) 
e ' dx 

where   x = t/T   and all the   x,    now lie between   -l/2  and   +1/2,     Corresponding 

to   g(t)  = 0   for   t  outside the interval   (-T/Z,   T/2),   one may define   gk = 0 

for   k -  0  and k - N,   s,   =0   for  k < 0   and  k — N  and allow the summation 
k 

to extend from   -oo to   oo     Let  h,   = g,    - T s, x, ; then 

(
k+1    -i2TT{AfTx - ijiT   x ) 

G(A£,^) = T 2 h,     \       e dx 
k    k   •) 

xk 

x 
k+1 

- T    2 s, 
-i27r(AfTx - ^TZx2) 

x e dx 

Summation by parts yields 

19 



G 

,K -iZTT(AfTx- j^T   x   ) 

(Af)(x) = T2S(Sk-sk.1)    \    (xk-x)e dx 
k -1/2 

After deforming the contour to that consisting of a hyperbola through 

-1/2   and a hyperbola through   z   -  x^ * one finds 

2    -IZIT^(-7) 

G(Af.ljL)  -   T'e S(sk- SJ^.J) 

_ oo 

J 
o 

x  - i (i - V(i + f)   +->  y   ) - ^ 
-TY 

,      ~, ^ ^ Z    2 

+ i 

-   2 2   2 
ZTTAfTy7(l + 7)     + *)    Y 

x e dy 

^TT^Ix,  ) 
D 

+ T^(sk-   s^^e \ 
1 I    »2        2   2, 

xk-i(l- ./(I- 7Xk)    +7   7) •y 

 .        - ^    2' 

2TTAfTy V^1 - 1 xu)     +77 
^y + i   e v dy 

,z      z  z 
(i - - xk)    + ;   y 

where 

■v ^T 

^   Äf 

The first summation in this expression  is zero since 

2(sk-sk_1)  = 0 

k 

*The contour of constant phase of the integrand is difficult to obtain.     The 
phase of the integrand varies  slowly on the hyperbolic contours. 

20 



and 

?(sk- ViK ■     ^~-zk^k+i-\)\~~-rzW-~0 

1 v-l Thus,   letting  ^k = (^ - Xj^)"1.  ^ = 2TTAfT(l - yx,) 

G(Af^) ^T2Z(sk-  s^Je-1271^ (A-l) 

OC 

+  i( 

.V'^ify2 ^ßsz   ' 
2    2 

+ K-W1 + ßky -^J 
-^Vl+ß^y2 

and an upper bound is obtained by adding magnitud 

|G(zAf,^)|  <   TZ S  |s 

es 

JO 

k       k-1 

^ß.V 

+ K 
^k^' 

V+ pk y 
2    2'      ^k 

i^if^v-i) •vV1 + ^y 
dy (A-2) 

dy 

Using the inequalities 

l/n-ßk
2y2 

. ,    .22 -^r + ^y 1 + ßk y     -   1  <  i3k y    ,    and    e     K k 2    21 22/ 
•ct. 

e (for   a.   > 0) 
-K 

the integrals may be evaluated with the result 

r i Zy G(Af^)|< 1     ,   2 Is.  - s,    ,, .      .    ^ 
(2^Af)Z   k      k       k-]       lil7~F       ^AfTd - 7v )4 

r 
(2TrAf)Z    (1 - J)Z 

1 + 
TTAfT(i   - I)' 

2|sk-sk_1|. (A-3) 

21 



The last inequality is obtained using the i'act that   x    <   1/Z   and  0 <  -;  « 1 

It is difficult to determine whether or not the bound (A-Z) will ever 

be attained in a particular example.     However,   one can construct a continuou: 

piecewisc linear pulse shape with a spectrum that attains this bound at any 

given frequency   Af   in the asymptotic  region by putting the breakpoints   x 

at points where the RF phase 

c/)(xk) =  AfTxk4lxT2xk
2 

has the proper value to make the complex terras   m (A -1) add in phase      Thus, 

while one cannot say that (A-Z)  is the envelope of  G(Af, ^i)   for an arbitrary 

continuous,   piecewise linear pulse,   it is the least upper bound for the class 

of pulses under consideration. 

ZZ 



APPENDIX B 

Useful Inequalities 

In order to calculate the spectrum of a pulse with linear FM,   the 

contour   -T/2   ^ t  ^  T/2   is deformed into the complex plane to a sum    of 

contributions from hyperbolic contours.     Each integrand contains the function 

f(x, y) = e 
2 2    Z 

• ory/v/x    +77 x, y ^0 

where   Q"  and  ")   are positive real numbers,     It will here be shown that for a 

fixed value of  y   > 0,   f(x, y)  is a convex function of  x   for   x >   —    '   It is 
1 sß 

precisely this region (actually   x >>      )   for which several important in- 

equalities are necessary to determine an upper bound for the spectrum under 

consideration. 

The first partial derivative of  f(x, y)   is 

9f(x,y) 
-~^  

ccyx 

./2~    2   Z 
Vx     + 7   y 

jZ 2    2 
■ ay -yx    + 7   y 

which is  everywhere negative in the region of interest.     The second partial 

derivative is 

n ,222 
9   f(x, y) ay e 

axZ /   2 j     2    2 
x   + 7   y 

2 2 

 r=  +      2        2   2    - i 

2        2    2 x    + 7   y 
A/x    t 7    y 

Inflection points of  f(x) y)   as a function of  x  for fixed y   occur at the 

9
2f zeros of  ^ .     For   x >   0   there is only one such point  x*(y); as   y   increases 

ax 1 
from zero to infinity,   x*{y)   moves from zero to 

2 V^ 
a f 

For   x >    ,   y >  0, 
V17 

y-    is positive,   and thus   f(x,y)   is a convex function of  x.     The important 
ax 
features of   f(x, y)   are indicated in Fig,   B-l 
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First Inequality 

The first inequality is 

ri    IT -ayx x, y, a, 7  a 0 (B-l) 

This relation is merely a consequence of the fact that the exponent is always 

negative (or zero),   and neglecting the ("yy)    term increases the function. 

Second Inequality 

The second inequality is 

2       2   2 
ayA/ x1  + 7   y 

+ e 
• ayY x2   + 7   y ■Q" 

xl + x2   2 .22 
)     + 7    y 

(B-2) 

where   (x, , x?)   is an interval in the convex region,   x >   ,   and  y S  0.     In 

8£(x, y) 
Öx 

the region of convexity of  f(x, y),   the maximum value of 

9f(x, y) 
~^  

m any 

occurs interval (x, , x^) occurs at x, , and the minimum value of 

at x^. Let x = -r (x, + x^ ) denote the center of the interval. Then, by the 

mean value theorem, there are two points, p, , p-, in the intervals (x, , x ), 

(x   , x-,)   respectively,   such that 

f,Xl,y) = £(Xc,y) + Mfez) 
x 

(x,  - xc) 

f<^y) = f(Xc,y)tM-y) 
X   =   P; 

(x-,   -   X    ) 
2 c 

Since   3£(^y)-   < 0, ox 
9   f(x;y) 

ox 
>    0, 
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and 

x= p. 

9f(x,y) 
—5r~ 

x = x 

X =   X 

9f(x,y) 
^T x= p. 

One then obtains 

fix^y)   > f(xc,y) + 9f(x.y) 
"~^  

x = x 
(Xc    -   X^ 

f(x2)y) > f(xc,y)   - 9f(x, y) 
—53r~ 

x = x 
(X2   -   Xc)        , 

and adding these two results yields 

ffx^y) + f(x2,y)   s 2f(xc,y) 

Third Inequality 

The third inequality involves the difference of  f(x, y)   evaluated at the 

ends of an interval   (x,   x + 6): 

~Z 2    2? 
-ay Jx    +7   y -oy^xf 6)     +7   y     ^ö6       -ü'yVx    + 

2    2 
7     y 

(B-3) 

According to the use of the mean value theorem in the preceding 

proof, 
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ffxj.y) =f(xc,y)  + —g^- 
x- p, 

(x1 - xc) 

f(x.y)+    *%ll v  c   ; ox 
x= p. 

(^-Xj)     , 

where  p, efx-.x  ).     Since 
Ml      c 

8f{x.y) 
8x 

x= p. 

af(x,y) 
üx 

X =   X, 

f(xlfy)  - f(xc,y) 
8f(x,y) 

"5T (xc      x^ 
x = x. 

Taking  x,   = X and  x    = x + 6,   and using the fact that 

2        2   2 x    + 7   y 

£   1    > 

one finds 

r/yx 
"2    ^   2V / Z        Z   ? 

■oy^/x   +7   y      _  ^-ay^J^^ 5)     + 7   y     ^ a5v 
,2        2   2 

•ay^x   + 7   y 

Fourth Inequality 

The final inequality involves an integral for   o > 0: 

1(7) 
^-ay^l + 7   y      dy -^ (1- (k+l)(k+2)l-) 

a 
(B-4) 

The first derivative of  1(7)   is 

27 



00 
Z   k+2 /. 2   2 

i.(T) = _ 1    Z2 y      e-«yVi + T y   dy 

ü       /l + T
2y2 

2 
2   k+2   -oy . 7  (k+2)! 

ay   y        e     ^ dy = -   -^^^  

using Eq.   (B-l).     By the mean value theorem,   there is a   ^   m the interval 

(0 , 7)   such that 

1(7) = 1(0) + ^ r(7)   . 

Since  r(7)  > - -   !   "> throughout the interval   (0,7),   we find 
a 

IW.I(O,.IW    . 
a 

k' Finally,   since   1(0)  =    <    ,   ,   the result (B-4) is obtained, 
a 

28 



DISTRIBUTION LIST: 

Group 41 

D. L.   Clark 
M,   Axelbank 
S.   Li.   Borison (2) 
W.   F.   Higgins 
H.   M    Jones 
E. J.   Kelly 
J.   J,   G.   McCue 
C.   W.   Perkins 
J.   B.   Resnick 
H.   Schneider 
C. B,   Slade 
E.   B.   Temple 
D. M    Towle 
R.   E.   VanderSchuur 

Group 45 

W.   W,   Ward 
J.   P.   Perry 
G.   R.   Armstrong 
D.   F.   DeLong (2) 
R.   P.   Wishner 

Division 4 

J.   Freedman 

Group ZZ 

L.   A.   Globus 

29 



UNCLASSIFIED 

UNCLASSIFIED 


